Barker’s algorithm for Bayesian inference with intractable likelihoods
نویسندگان
چکیده
منابع مشابه
On Russian Roulette Estimates for Bayesian inference with Doubly-Intractable Likelihoods
A large number of statistical models are ‘doubly-intractable’: the likelihood normalising term, which is a function of the model parameters, is intractable, as well as the marginal likelihood (model evidence). This means that standard inference techniques to sample from the posterior, such as Markov chain Monte Carlo (MCMC), cannot be used. Examples include, but are not confined to, massive Gau...
متن کاملBayesian experimental design for models with intractable likelihoods.
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utili...
متن کاملPlaying Russian Roulette with Intractable Likelihoods
A general scheme to exploit Exact-Approximate MCMC methodology for intractable likelihoods is suggested. By representing the intractable likelihood as an infinite Maclaurin or Geometric series expansion, unbiased estimates of the likelihood can be obtained by finite time stochastic truncations of the series via Russian Roulette sampling. Whilst the estimates of the intractable likelihood are un...
متن کاملApproximate inference in state space models with intractable likelihoods using Gaussian process optimisation
We propose a novel method for MAP parameter inference in nonlinear state space models with intractable likelihoods. The method is based on a combination of Gaussian process optimisation (GPO), sequential Monte Carlo (SMC) and approximate Bayesian computations (ABC). SMC and ABC are used to approximate the intractable likelihood by using the similarity between simulated realisations from the mod...
متن کاملParameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brazilian Journal of Probability and Statistics
سال: 2017
ISSN: 0103-0752
DOI: 10.1214/17-bjps374